One of the most complex, 3-D printed rocket engine parts ever made.




A team at NASA’s Marshall Space Flight Center in Huntsville, Alabama tested 3-D printed rocket engine 
A NASA team moved a step closer to building a completely 3-D printed, high-performance rocket engine by manufacturing complex engine parts and test firing them together with cryogenic liquid hydrogen and oxygen to produce 20,000 pounds of thrust.
Seven tests were performed with the longest tests lasting 10 seconds. During the tests, the 3-D printed demonstrator engine experienced all the extreme environments inside a flight rocket engine where fuel is burned at greater than 6,000 degrees Fahrenheit (3,315 degrees Celsius) to produce thrust. The turbo pump delivers the fuel in the form of liquid hydrogen cooled below 400 degrees Fahrenheit (-240 degrees Celsius). These tests were performed with cryogenic liquid hydrogen and liquid oxygen, propellants that are mainstays of spaceship propulsion systems. Even if methane and oxygen prove to be the Mars propellant of choice, the propellant combination of cryogenic liquid hydrogen and oxygen tests the limits of 3-D printed hardware because it produces the most extreme temperatures and exposes parts to cryogenic hydrogen, which can cause embrittlement. In addition to testing with methane, the team plans to add other key components to the demonstrator engine including a cooled combustion chamber and nozzle and a turbo pump for liquid oxygen.




Popular Posts